

B. Sc. (Statistics) (Sem. VI) (CBCS) Examination March / April - 2018

S - 601: Design of Experiment & Sampling Techniques (New Course)

Faculty Code: 003 Subject Code: 001662

	Subject code . 001002	
Time: 2	$2\frac{1}{2}$ Hours] [Total Marks	: 70
Instruct	tions: (1) Q. No. 1. carries 20 marks. (2) Q. No. 2 and Q. No. 3 each carries 25 ma (3) Students can carry their own scientific calcul	
1 Filli	ing the blanks:	20
(1)	A subject receiving a treatment in an experiment is called	
(2)	Systematic influences likely to occur in an experiment can be removed through	
(3)	Replications provide a valid estimate of	
(4)	Greater homogeneity within the block in an experiment is better maintained through	
(5)	Statistical model considered for all designs is an model.	
(6)	The linear combination $-3T_1 - T_2 + T_3 + 3T_4$ of four treatments is a	
(7)	Among <i>k</i> treatments, there can at most beorthogonal contrasts.	
(8)	The design where only replication and randomization are used is	
(9)	Each treatment occurs in a block of randomized complete block design.	
(10)	- · · · · · · · · · · · · · · · · · · ·	
(11)) In stratified random sampling, the variance of \overline{x}_{st} for	
	fixed total size of sample is minimum if n_j is proportional to	
MAL-003	3-001662] 1 [Con	td

(12)	With varying cost C_j per unit in stratified random sampling, the variance of \overline{x}_{st} attains the smallest value if n_j is proportional to				
	(13) $V_{prop}(\overline{x}_{st})$ lies in between $V_{opt}(\overline{x}_{st})$ and				
	students, will provide good estimate of average IQ.				
(15)	When a simple random sample is drawn from each stratum, it is known as				
(16)	The main disadvantage of systematic sampling is that formula for estimating the standard error of sample mean is available.				
(17)	When the population size N is a multiple of sample size n , systematic sampling appropriate.				
(18)	When the population size N is not divisible by the sample size n , systematic sampling appropriate.				
(19)	Attaining maximum efficiency in estimating for a fixed cost is a part of principle of				
(20)					
(A)	Give the answer: (Any Three)	6			
	(1) Prove that $E(\overline{y}) = \overline{Y}$				
	(2) Write assumptions of ANOVA.				
	(3) Write ANOVA table for one way classification.				
	(4) Mention in brief the objective of sampling.				
	(5) What is meant by sampling frame?				
	(6) For studying the characteristics the observation of a population are 3, 4, 7, 8. How many random samples of size 2, with replacement can be taken				
	from it? Making a list of all the samples verify				

(B) Give the answer : (Any **Three**)

the results $E(\overline{y}) = \overline{Y}$

(1) Prove that if $N \to \infty$ then $V(\overline{y}_{st}) = \frac{\sum_{h=1}^{L} w_h^2 S_h^2}{n_h}$ where $w_h = \frac{N_h}{N}$

 $\mathbf{2}$

9

(2) A population is divided in three strata. The information regarding then is as follows:

Stratum	Number of units in the stratum	Stratum mean	Stratum variance
1	60	8	12
2	30	6	10
3	10	9	4.5

If 10, 6, 3 units are taken respectively from these strata, find the variance of stratified mean. Also find the population mean.

- (3) Explain estimation of one missing value in CRD.
- (4) Prove that $E(S^2) = S^2$
- (5) Prove that $Var(\overline{y}_n)_{ran} > V(\overline{y}_{sys})$ if and only if $S^2_{wsys} > S^2$
- (6) Write the set of orthogonal contrasts for main effect and interaction in 2^3 —experiment
- (C) Give the answer: (Any Two)

10

- (1) Explain estimation of one missing plot in R.B.D
- (2) Explain analysis of LSD
- (3) Explain analysis of one way classification.
- (4) Prove that $V(\overline{y}_{st}) \leq V(\overline{y}_{sys}) \leq V(\overline{y}_n)_{ran}$ if population consists of a linear trend
- (5) From the following data find $V(\overline{y}_{st})$ under optimum allocation 10% stratified sample is to be taken.

Stratum	N_h	S_h
I	100	4
II	200	5
III	200	3

 ${f 3}$ (A) Give the answer : (Any ${f Three}$)

6

- (1) Define Simple Random Sampling
- (2) In what situations sampling is invetible?
- (3) Calculate sample size for estimating a proportion.

- (4) It is know that the population standard deviation in waiting time for L.P.G. gas cylinder in Rajkot is 15 days. How large a sample should be chosen to be 95% confident, the waiting time is within 7 days of true average.
- (5) Define Symmetrical factorial experiment
- (6) Write the Yate's method for a 2²-experiment
- (B) Give the answer: (Any **Three**)

9

- (1) Why Confounding is needed?
- (2) Yate's Method for 2³-experiment
- (3) Explain layout of design of Latin Square Design
- (4) Prove that $V(\overline{y}_{sys}) = \frac{N-1}{N}S^2 \frac{N-k}{N}S_{wys}^2$
- (5) Prove that:
 - (i) $E(\overline{y}_{st}) = \overline{Y}$

(ii)
$$V(\overline{y}_{st}) = \frac{1}{N^2} \left\{ \sum_{h=1}^{L} N_h \frac{N_h (N_h - n_h) s^2 h}{n_h} \right\}$$

(6) Obtain the population mean and variance of the stratified mean from the following data:

$$N_1 = 40, N_2 = 30, N_3 = 30, \overline{Y}_1 = 5, \overline{Y}_2 = 7, \overline{Y}_3 = 6,$$

$$S_1^2 = 10, S_2^2 = 8, S_3^2 = 9 n_1 = 8, n_2 = 6, n_3 = 6$$

(C) Give the answer: (Any Two)

10

- (1) Explain analysis of RBD
- (2) Explain estimation of one missing plot in L.S.D.

(3) Prove that
$$V(\overline{y}_{sys}) = \frac{N-1}{N} \frac{S^2}{n} [1 + (n-1)\rho]$$

- (4) Prove that $V(\overline{y}_{ran}) \ge V(\overline{y}_{st})_{prop} \ge V(\overline{y}_{st})_{opt}$
- (5) For studying the characteristics the observation of a population are 2, 3, 4. How many random samples of size 2, without replacement can be taken from it? Making a list of all the samples verify the following results:

(i)
$$E(\overline{y}) = \overline{Y}$$

(ii)
$$V(\overline{y}) = \frac{N-n}{N} \frac{S^2}{n}$$

(iii)
$$E(S^2) = S^2$$